
Classes,	Objects,	and	Interfaces

CS	5010	Program	Design	Paradigms
"Bootcamp"
Lesson	9.1

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Module	Introduction

• In	this	module,	we	will	see	how	classes,	
objects,	and	interfaces	fit	into	our	account	of	
information	analysis	and	data	design

• We'll	see	how	the	functional	and	the	object-
oriented	models	are	related

• We'll	learn	how	to	apply	the	design	recipe	in	
an	object-oriented	setting.

2

Generalization

Over	Constants

Over	Expressions

Over	Contexts

Over	Data	
Representations

Over	Method	
Implementations

Mixed	Data

Data	
Representations

Basics

Recursive	Data

Functional	Data

Objects	&	
Classes

Stateful Objects

Module	09

3

Design	
Strategies

Combine	simpler	
functions

Use	a	template

Divide	into	Cases

Call	a	more	
general	function

Communicate	
via	State

Recur	on	
subproblem(s)

Goals	of	this	lesson

• Learn	the	basics	about	classes,	objects,	fields,	
and	methods.

• Learn	how	these	ideas	are	expressed	in	the	
Racket	object	system

• We	assume	that	you	already	know	a	little	
about	object-oriented	programming.

4

Slogans	for	this	lesson

• Classes	are	like	define-structs,	but	with	
methods	(functions)	as		well	as	fields.

• Every	object	knows	its	class.
• Invoke	a	method	of	an	object	by	sending	it	a	
message.

• The	interface	of	an	object	is	the	set	of	
messages	to	which	it	responds.

• Interfaces	are	data	types

5

Classes	and	Objects

• A	class	is		like	a	define-struct.
• It	specifies	the	names	of		the	fields	of	its	
objects.

• It	also	contains	some	methods.	 	Each	method	
has	a	name	and	a	definition.

• To	create	an	object	of	class	C,	we	say
(new C)

6

You	say	more	than	this,	but	
this	is	good	enough	right	

now.

What	is	an	object?
• An	object	is	another	way	of	representing	compound	data,	like	

a	struct.		
• Like	a	struct,	it	has	fields.
• It	has	one	built-in	field,	called	this,	which	always	refers	to	this	

object
• Here	are	pictures	of	two	simple	objects:

7

x = 10
y = 20
r = 10
this =

h = 30
w = 15
color =
"blue"
this =

We	assume	that	you've	 seen	
some	kind	of	object-oriented	
programming	before,	so	we're	
just	reviewing	vocabulary	here.

If	you've	really	never	used	OOP	
before,	go	do	some	outside	
reading	before	continuing.		

Every	object	knows	its	class	(1)

8

x = 10
y = 20
r = 10

x = 15
y = 35
r = 5

(class* object% ()
(init-field x y r)
(define/public (foo) (+ x y))
(define/public (bar n) (+ r n))
...)

Here	are	two	objects	of	the	same	
class.		
In	the	class	definition,	the	init-field
declaration	specifies	that	each	
object	of	this	class	has	3	fields,	
named	x,	y,	and	r.
The	class	definition	also	defines	two	
methods,	named	foo and	bar,	that	
are	applicable	to	any	object	of	this	
class.

These	objects	also	have	a	this
field,	but	we	don't	show	it	

unless	we	need	to.

How	do	you	compute	with	an	object?

• To	invoke	a	method	of	an	object,	we	send	the	
object	a	message.

• For	example,	to	invoke	the	areamethod	of	an	
object	obj1,	we	write

(send obj1 area)
• If	obj1 is		an	object	of	class	C,	this	invokes	the	
area	method	in	class	C.

9

Every	object	knows	its	class	(2)

10

x = 10
y = 20
r = 10

x = 15
y = 35
r = 5

(class* object% ()
(init-field x y r)
(define/public (foo) (+ x y))
(define/public (bar n) (+ r n))
...)

obj1

obj2 The	variables	in	the	method	declarations	
refer	to	the	fields	in	the	object.		So:

(send	obj1	foo)	returns	30
(send	obj2	foo)	returns	50

Every	object	knows	its	class	(3)

11

x = 10
y = 20
r = 10

x = 15
y = 35
r = 5

(class* object% ()
(init-field x y r)
(define/public (foo) (+ x y))
(define/public (bar n) (+ r n))
...)

obj1

obj2 Methods	can	also	take	arguments,	just	
like	functions.		So

(send	obj1	bar	8)	returns	18
(send	obj2	bar	8)	returns	13

Every	object	knows	its	class	(4)

12

(class* object% ()
(init-field x y r)
(define/public (foo) (+ x y))
(define/public (bar n) (+ r n))
(define/public (baz n) (+ (send this foo)

n))
...)

Methods	are	just	Racket	functions,	so	
they	can	do	anything	a	Racket	function	
can	do,	including	send	messages	to	
objects.

(send	obj1	baz 20)	returns	(+	30	20)	=	50
(send	obj2	baz 20)	returns	(+	50	20)	=	70

x = 10
y = 20
r = 10
this =

obj1
x = 15
y = 35
r = 5
this =

obj2

Every	object	knows	its	class	(5)

13

(class* object% ()
(init-field x y r)
(define/public (foo) (+ x y))
(define/public (bar n) (+ r n))
(define/public (baz n) (+ (send this foo)

n))
...)

obj2
obj1

x = 10
y = 20
r = 10
this =

x = 15
y = 35
r = 5
this =

a = 15
b = 35
c = 5
this =

(class* object% ()
(init-field a b c)
(define/public (foo) (+ a b))
(define/public (bar n) (* c n))
(define/public (baz n)

(+ (send this foo) n))
...)

obj3

Here's	another	object,	
obj3,	of	a	different	
class.	If	we	send	a	
message	to	obj3,	then	
obj3's	methods	will	be	
invoked.

Every	object	knows	its	class	(6)

14

(class* object% ()
(init-field x y r)
(define/public (foo) (+ x y))
(define/public (bar n) (+ r n))
(define/public (baz n) (+ (send this foo)

n))
...)

obj2
obj1

x = 10
y = 20
r = 10
this =

x = 15
y = 35
r = 5
this = So

(send	obj2	bar	8)	
=	(+	5	8)	
=	13
(send	obj3	bar	8)
=	(*	5	8)
=	40

a = 15
b = 35
c = 5
this =

(class* object% ()
(init-field a b c)
(define/public (foo) (+ a b))
(define/public (bar n) (* c n))
(define/public (baz n)

(+ (send this foo) n))
...)

obj3

The	important		thing	about	an	object	is	
what	methods	it	responds	to

• So	if	I	wrote
(define (foo1 x) (send x bar 8))

• I		could	call	foo1 on	obj1,	obj2,	or	obj3,	
because	all	of	them	respond	to	the	bar
message	with	an	integer	argument.	

• The	contract	for	foo1 should		specify	that	its	
argument	will	accept	a	barmessage	with	an	
integer	argument.

15

Interfaces	are	data	types

• The	set	of	messages	to	which	an	object	
responds	(along	with	their	contracts)	is	called	
its	interface.

• So	the	contract	for	foo1 (or	any	other	function	
that	takes	an	object	as	an	argument)	should	
be	expressed	in	terms	of	interfaces.

• So	interfaces	play	the	role	of	data	types	in	the	
OOP	setting.

16

Using	The	Racket	Class	System

• We	will	use	full	Racket	(yay!)
• Write	

#lang racket
at	the	beginning	of	each	file
• And	set	the	Language	level	to	"Determine	
Language	from	Source"

17

Interface	definition
#lang racket

(require "extras.rkt")
(require rackunit)

;; examples from Lesson 9.1

(define Interface1<%>
(interface ()

foo ; -> Int
bar ; Int -> Int
baz ; Int -> Int
))

18

In	Racket,	names	of	interfaces	
end	with	<%> (by	

convention)

Ignore	that ()	for	now

We	write	down	each	method	name,	
with	its	contract	as	a	comment.		We	

can	write	them	in	any	order

foo is	a	function	of	no	arguments	 (legal	in	#lang racket)

A	Class	Definition	(1)
(define Class1%

(class* object% (Interface1<%>)

(init-field x y r) ;; x,y,r : Int

(super-new) ;; required magic

;; foo : -> Int
(define/public (foo) (+ x y))

;; bar : Int -> Int
(define/public (bar n) (+ r n))

;; baz : Int -> Int
(define/public (baz n)
(+ (send this foo) n))

))

19

This	means	that	this	class	is	
supposed	 to	implement	
Interface1<%>. If	we	leave	off	one	
of	the	methods,	we’ll		get	an	error	
message.

x,	y,	and	r are	the	field	names.		
We’ve	put	in	their	contracts	as	a	
comment.	In	a	real	example,	you’d	
put	an	interpretation	 for	each	field,	
just		as		you	do	the	fields	 	of	a	struct.

object%	and	(super-new)	are	
required	magic.		We’ll	learn	about	
them	in	a	later	module

A	Class	Definition	(2)
(define Class1%

(class* object% (Interface1<%>)

(init-field x y r) ;; x,y,r : Int

(super-new) ;; required magic

;; foo : -> Int
(define/public (foo) (+ x y))

;; bar : Int -> Int
(define/public (bar n) (+ r n))

;; baz : Int -> Int
(define/public (baz n)
(+ (send this foo) n))

))

20

We	use	define/public to	define		
methods.		Here	we’ve	written	the	

contract	for	each	method;	 later	we’ll	
see	what	the	Design	Recipe	
deliverables	for	methods	are.	

Another	class	definition
(define Class2%
(class* object% (Interface1<%>)

(init-field a b c) ; a, b, c : Int

(super-new)

;; foo : -> Int
(define/public (foo) (+ a b))

;; bar : Int -> Int
(define/public (bar n) (* c n))

;; baz : Int -> Int
(define/public (baz n)

(+ (send this foo) n))

))

21

Here’s	the	definition	 of	
Class2%	.		Observe	that	it	
has	different	 field	names,	
but	the	same	method	
names.		The	method	
definitions	 refer	to	the	

new	field	names.

Yet	another	class	definition
(define Class2%
(class* object% (Interface1<%>)

(init-field a b c) ; a, b, c : Int

(super-new)

;; foo : -> Int
(define/public (foo) (+ a b))

;; bar : Int -> Int
(define/public (bar n) (* c n))

;; baz : Int -> Int
(define/public (baz n)
(+ (send this foo) n))

))

(define Class2a%
(class* object% (Interface1<%>)

(init-field a b c) ; a, b, c : Int

; add a new field, initialized to (– a)
(field [a1 (- a)])

(super-new)

;; foo : -> Int
(define/public (foo) (- b a1))

;; bar : Int -> Int
(define/public (bar n) (* c n))

;; baz : Int -> Int
(define/public (baz n)
(+ (send this foo) n))

))

22

Objects	of	Class2%	and	Class2a%	
are	built	the	same	way	and	give	the	
same	answer	for	every	method	call.	
Any	procedure	 that	works	with	one	
will	work	the	same	way	with	the	

other.		

This	is	another	reason	
we	write	contracts	in	
terms	of	interfaces,	not	

classes.

Creating	objects	and	testing
(define obj1 (new Class1% [x 10][y 20][r 10]))
(define obj2 (new Class1% [y 35][x 15][r 5]))
(define obj3 (new Class2% [a 15][b 35][c 5]))

(begin-for-test

(check-equal? (send obj1 foo) 30)
(check-equal? (send obj2 foo) 50)

(check-equal? (send obj1 bar 8) 18)
(check-equal? (send obj2 bar 8) 13)

(check-equal? (send obj1 baz 20) 50)
(check-equal? (send obj2 baz 20) 70)

(check-equal? (send obj2 bar 8) 13)
(check-equal? (send obj3 bar 8) 40)

)

23

Here	is	the	syntax	for	
creating	objects.		The	

fields	can	be	listed	in	any	
order.	

And	here	we	send	the	objects	
some	messages	and	check	that	
the	results	are	as	we	predicted	

on	the	slides	above.

Lesson	Summary

• In	this	lesson	we’ve	learned:
– Classes	are	like	define-structs,	but	with	methods	
(functions)	as		well	as	fields.

– Every	object	knows	its	class.
– Invoke	a	method	of	an	object	by	sending	it	a	message.
– The	interface	of	an	object	is	the	set	of	messages	to	
which	it	responds.

– Interfaces	are	data	types.
• We’ve	seen	how	to	define	classes,	objects,	and	
interfaces	in	the	Racket	object	system.

24

Next	Steps

• Study	the	file	09-1-basics.rkt	in	the	Examples	
folder

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Go	on	to	the	next	lesson

25

